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Rhn—ZTeI 276 A Ten-l R.hI 2:64 A
~1Terr 2-61 —2Rhy 2:61
—2Ten 2:63 —4Rh11 2:63

Table 3. Structure factors

HKO Fe |Fol HK]1 Fe  |Fl
800 45 41 4,11,1 7279
3,120 -21 30 811 40 40
820 58 58 0,13,1 0 3
840 137 120 1,13,1 36 4l
4,12,0 49 60 691 -4 7
780 51 51 831 —48 46
6,10,0 121 123 771 -15 13
0,140 -26 32 2,131  -20 23
1,14,0 5 8 511,1 46 46
860 —49 51 851 36 33
2,14,0 101 111 3,131 —73 80
5120  —33 33 791 -7 67
920 -30 31 4,13,1 48 48
3,14,0 70 77 911 55 52
940 -5 6 6,11,1 8 6
7,10,0 17 17 871 79 71
880 74 74 931 -15 14
4,140 —26 30 0,15,1 120 97
6,12,0 -8 11 L,15,1  —44 41
960 —27 30
0,160 —15 15
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—-1Rhy 2:82
—-1Rhr 2:86
—-1Rhyr 2-91
-2Rhyr 3-05

The shortest Te-Te distance in the structure is 3-70 A.

In the high temperature (Cdl,) and low temperature
(pyrite) forms of RhTe, Geller (1954) reported Rh—6Te
=265 and 2:64 A. Geller gives Rh—-6Te=2-70 A and
Rh-2Rh=2:83 A for the high-temperature form (NiAs)
of RhTe.
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ments, and their help is gratefully acknowledged. Part
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University of California at San Diego. The writer
thanks Professor B.T.Matthias and other La Jolla
friends for enjoyable hospitality. The work was in part
supported by the Advanced Research Projects Agency.
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The Crystal Structure of Benzotrifuroxan (Hexanitrosobenzene)*
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The crystal structure of benzotrifuroxan (hexanitrosobenzene) has been refined by full-matrix least-
squares computations on all positional and thermal parameters to a final weighted R index of 0-040 for
606 reflections of observable intensity. The unit cell is orthorhombic (a= 6923, b=19-516, c=6-518 A),
space group Pna2;, with four molecules per unit cell.

The molecule is essentially planar, and the six nitroso substituents have formed three furoxan rings.

Introduction

There has been considerable interest in the configura-
tion of benzofuroxans. Kaufman & Pickard (1959)
cover the classical aspects of this interest in their
review article. More recently Harris, Katritzky, @ksne,
Bailey & Patterson (1963) have proven the benzo-
furoxan configuration of this type of compound in solu-
tion. Previous X-ray work on this problem consists
in two preliminary and somewhat contradictory studies
by Hulme (1962) and Gol’der, Todres-Selektor &
Bognadov (1961), and work by Britton & Noland (1962)
on the structure of 5-chlorobenzofurazan-1-oxide. Brit-
ton & Noland found that this compound has the
furoxan structure, but their work leaves unsettled some
of the important details of the structure.

* This work was performed under the auspices of the U.S.
Atomic Energy Commission,

In this paper we report the results of a study whose
purpose was to elucidate the structure of benzotri-
furoxan in the solid state. In particular, we were con-
cerned with the relative importance of the nitroso and
furoxan configurations in this symmetric compound,
and with the pertinent bond angles and interatomic
distances.

Benzotrifuroxan is, incidentally, a powerful and rel-
atively sensitive explosive.

Experimental

A sample of benzotrifuroxan was prepared in this Lab-
oratory following the method of Turek (1931). A single
crystal suitable for collection of the X-ray intensity
data was grown on its mounting fiber by recrystalliza-
tion from acetone. The longest internal dimension of
this crystal was 0-340 mm. The crystal was aligned and
preliminary unit-cell dimensions and space group ex-



HOWARD H. CADY, ALLEN C. LARSON AND DON T. CROMER

tinctions were determined with precession photographs.
The crystal was then transferred to a carefully aligned
General Electric Company single-crystal orienter (SCO)
equipped with a scintillation counter and a molyb-
denum X-ray tube.

Cell dimensions were determined from a least-
squares fit of 23 20 (A Mo Ka;=0-70926 A) values,
greater than 24°, for general hk/ reflections which were
measured on the SCO at 21°C. This least-squares fit
gives a=69234+0-0009, b=19-5158 £0-0012, c=
6-5180 + 0-0013 A for the orthorhombic unit cell. There
are four molecules in the unit cell, and the calculated
density of 1-901 g.cm—3 compares reasonably with the
measured density of 1-87 g.cm—3.

The crystal was mounted with its ¢ axis coincident
with the ¢ axis of the SCO. Background corrections
were made by the balanced filter technique. Reflections
within a sphere limited by 26=50° were examined by
the stationary-counter stationary-crystal technique.
Within the quarter of the sphere counted, 1605 space-
group-allowed reflections were examined. Of the 853
unique reflections in this set, 606 were strong enough

to be observed; i.e. I— Bkgd> 251+ Bkgd.
Computational details

Lorentz and polarization corrections were applied. Ab-
sorption corrections were made assuming the crystal
was box-shaped with sides of lengths 0-145, 0-214, and
0-235 mm (absorption coefficient=1-87 cm-1). The
maximum error introduced by this approximation to
the true crystal (22 faces) was less than 0-05%;. The
program described by Larson, Cromer & Roof (1964)
was used for these corrections. Equivalent F2 values
were averaged and the observed F was taken as the
square root of this average. The average agreement of
equivalent reflections was estimated by forming an
index _

X |F2—F?||X F2

where the summation was taken over all reflections
which were observed more than once. This index was
0-054. A similar quantity,

X |F—F2||X F2t

based on F, was 0-032,

All least-squares calculations were made with the
use of the full matrix. The least-squares parameters in-
cluded, in addition to atomic position and thermal par-
ameters, one scale factor and one parameter to allow
for secondary extinction. The secondary extinction par-
ameter was found to be negligible and was set equal to
zero in the later stages of the refinement. The quantity
minimized was X w(F,— F¢*)?, where

.l 2(1 4 cos*26 1P
Fel = Il ] Vg [ G sossgs| L2 1P}

in which k =scale factor, g=extinction parameter (Za-
chariasen, 1963), Lp=_Lorentz and polarization fac-
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tors, and Fc is the calculated structure factor, and
where w=wg/(|Fo| +0-02|F,|?) for all observed re-
flections and w=0-0 for unobserved reflections. The
term wg is the weight based on counting statistics as
described by Evans (1961). Anisotropic thermal par-
ameters were in the form exp [—(h2By;+k2By+
12B33+ hk By, + hiBy 3+ kiB,3)]. The R index is defined as
(Z W]l Fol — |FeX|/Z WIFo]).

The estimated standard deviations were calculated

from
O'j — ]/aﬂ [Z W(IFol - |F6*|)2]
m-—n

where m is the number of observed reflections, » is the
number of parameters, and a” is the jj element of the
inverse matrix. The atomic scattering factors used are
those given in International Tables for X-Ray Crystallo-
graphy (1962).

All calculations were performed on IBM 7094 or
7030 computers, with codes written by the authors
unless otherwise indicated.

Determination and refinement of the structure

The space group is not uniquely determined by sys-
tematic extinctions (0k/ with (k +/) odd, A0/ with k1 odd)
and could be either Pna2; or Pnam. A three-dimen-
sional sharpened Patterson map was computed. In-
spection of the Patterson map and statistical tests of
the data (Howells, Phillips & Rogers, 1950; Ramachan-
dran & Srinivasan, 1959) indicated the proper space
group to be Pna2;. The orientation of a molecule could
be derived from the Patterson map; however, the x
and y coordinates of atoms were not obvious.

Since the general position set for space group Pra2,
is fourfold and because so much was known about
the geometry of the molecule, the problem seemed
ideally suited to a vector verification method for de-
termining a trial structure. A code was written which
would start with a fixed array of points and then rotate
and translate this array into any of its possible orienta-
tions in the unit cell. The symmetry related points
were generated and the value of the sharpened Patter-
son map at all interpoint vectors was determined. Scal-
ing of the values for the assumed atomic numbers of
the atoms in the vectors, and selection of the lowest
value determined from an entire set of vectors, yielded
a number indicating the consistency of the model with
the Patterson map. This procedure amounts to cal-
culating the value of the minimum function (Buerger,
1959) at each ‘atom site’ and then selecting the lowest
of these values as the index of correctness of the post-
ulated structure.

A search was conducted for likely locations for a
benzene group. After many possible benzene group
positions were found, nitrogen atoms were added at
1-4 A from the carbon atoms and several possible trial
structures were obtained.



338 THE CRYSTAL STRUCTURE OF BENZOTRIFUROXAN (HEXANITROSOBENZENE)

Close inspection of these trial structures revealed
that they were all the same except for choice of origin
or polar direction in the unit cell.

One set of carbon and nitrogen positions was used
to calculate an observed Fourier map. The extra peaks
on this map determined the trial positions for the oxy-
gen atoms in the least-squares refinement. With the
assumption of isotropic atoms the problem converged
rapidly to an R index of 0-10. All atoms were then
allowed to become anisotropic, and the refinement con-
tinued until all 4&;/0(&;) were <1-9 x 10-2 for all par-
ameters . The final value of R was 0-040.

The final least-squares parameters and their stan-
dard deviations are given in Table 1 and the corres-
ponding values of 10 k|F,|, 10 k|F.*|, and « are given

Fig. 1. Intramolecular bond lengths (A).

in Table 2. The standard deviation of the electron den-
sity (o,) in the structure is estimated to be 4-73 x 102
e.A-3 by Cruickshank’s (1949) formula. Observed and
difference Fourier maps of the final structure were calc-
ulated. The peaks and valleys of the difference map
indicated no significant errors in the structure.

Detailed description of the structure

Interatomic distances before correction for thermal
motion are given in Table 3. The closest intermolecular
distance is from N(I) to 0(5’) of the molecule at z+1,

which is 2097 +0:006 A. Intramolecular bond angles

are given in Fig. | (standard deviations for these angles
range from 0-4 to 0-6 degrees). Standard deviations for

0(3)
Fig.2. Intramolecular bond angles (°).

Table 1. The final least-squares parameters and their estimated standard deviations for benzotrifuroxane

The standard deviations apply to the rightmost digits of the least-squares parameters.
The anisotropic temperature factor is of the form: exp [— (B11A2+ B22k2+ B33l2+ By2hk + By3hl+ By3kl)]; and
B is {(B11a2+ B2b2 + Bi3c2) for an anisotropic atom (Hamilton, 1959).

Atom X y z By x 104
C(1) 041658 0-0995+2 0 217+13
C(2) 0-6009+8 00743+2 —0-0691+13 186+12
C(3) 06832+7 0:0950+3 —0-2554+14 175+12
C(4) 0-5782+7 0-1413+3 —0-3817+12 201+14
C() 039757 01693+2 —0-3187+13 207+13
C@6) 0-3216+7 01475+2 —0-1255+13 171+12
N(1) 0-3219+6 0-0851+2 0:1677+11 223+11
N(2) 072167 0-0317+2 0-0216+12 210+12
N(3) 0-8558+6 00676+3 —0-2843+13 218+12
N(4) 06153+7 0-1657+2 —0-5680+12 267+13
N() 03245+7 021062 —0-4545+12 276+13
N(@) 0-1588+7 01653+£2 —0-0291+13 199+11
O(1) 0-1548+5 0-1252+2 0-1610+12 214+10
0(2) 07192+6 —0-0014+2 0-1787+13 277+11
O(3) 0-8896+5 0-0274+2 --0-1137+12 208+9

O@4) 07412+6 01591+2 —06934+12 298+10
O(5) 04533+6 02122+2 —-0-6154+11 301+11
O(6) 0-0262+6 0-2035+2 —0-0656+12 247+10

By x 105 B33 x 104 Biax 105 B3 x 104 By x 104 B(A)z
229+16 245+17 -—-250£82 —1+28 —10x9 3-94
223 +15 282+17 51+77 —-77+27 —-8+10 3-92
235+£16 301+£18 —13+79 12428 —24+11 4-02
249+16 221+17 —198%+79 64+26 —18+9 3-80
210+16 236+17 —40+75 —15x27 —8+9 373
229+16 272+17 21+78 5427 -36+9 379
343+£17 275415 —83+73 40+ 26 12+10 472
275+16 326+18 —34+71 —29+26 6+9 458
335+17 363+19 6+ 68 57+£29 -—-34+11 515
245+14 260+16 —2621+76 26£27 —16£8 442
31116 267+16 207+80 —13+27 13£9 485
339+16 301x16 ~7+76 20+24 —-20%+10 470
409+15 296+13 28+61 82+20 4+8 512
380+15 388+14 180+ 68 —61+25 89+9 595
330+12 37915 224457 —28+25 —-6+9 515
402+15 277+14 —344+67 206+£23 -—34+8 551
330+13 279%13 104 +63 1+24 9+8 518
405+14 437+17 722+64 15+23 18+10 6-11
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these distances and bond angles were computed using
the entire variance—covariance matrix. Examination of
Table 3 and Figs.1 and 2 clearly indicates the benzo-
trifuroxan structure as opposed to any other of the
possible configurations.

The atomic positional parameters were transformed
into an isometric set and the plane of the molecule was
determined to be 0-46634X+0-76605Y +0-44237Z —
2-86851 =0. The distances of the atoms from this plane
are given in Table 4.

The anisotropic thermal parameters were transform-
ed to obtain the axes of the ellipsoids of thermal vib-
ration and the directions of these axes with respect to
the crystallographic axes. These results are presented
in Table 5. The standard deviations were computed
using the entire variance-covariance matrix.
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Rigid body calculations were carried out for the
following groups of atoms: (1) the benzene ring, (2) all
of the carbon and nitrogen atoms, and (3) the benzotri-
furazan ring system. The method of Cruickshank
(1956a) was employed using a code provided by True-
blood (1963). The center of mass of the rigid body was
taken as the unweighted average of the atomic posi-
tions. Oxygen atoms (2), (4), and (6) were clearly elim-
inated from the rigid body by examination of their
ellipsoids of thermal vibration. Examination of the
thermal and oscillatory motions from the three rigid
body calculations showed that the benzene ring was
the only group which had reasonable rigid body mo-
tions.

The rigid body calculations are strictly valid only
when the whole molecule may be regarded as a rigid

Table 2. Observed and calculated magnitudes of the structure factors for benzotrifuroxan

The column headings are k, 10k|F,|, 10kF, (see text), and «. A minus sign preceding 10k|F,| means ‘less than’.
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body, or when the internal vibrations are small enough
to be neglected. This molecule does not meet these re-
quirements. Likewise the assumption that all bonded
atoms are vibrating in phase seems somewhat unlikely,
especially for the atoms in the furazan rings. However,
in the absence of facilities for a more detailed and
rigorous treatment, a combination of these approxima-
tions was tried. Bond distance corrections were cal-
culated for the carbon skeleton by the method of
Cruickshank (1956b, 1961) and for the rest of the atoms
assuming adjacent atoms vibrate in phase (Busing &
Levy, 1964). Support for this assumption comes from
the fact that the thermal vibration of all atoms in-
creases perpendicular to the bonds as the distance
from the center of the molecule increases. The corrected
bond distances are given in Table 3, and a diagram of
the molecule showing these distances is shown in
Fig.2.

Bond number calculations were made (Pauling, 1960)
using the average corrected bond distances from Table
3. These calculations indicate bond numbers of 1-:27 for
the C-C, 1-46 for the type C(1)-N(1), 1-34 for the type
C(2)-N(2), 1-74 for the type N(2)-0O(2), 0-82 for the
type N(2)-O(3), and 1-03 for the type N(3)-O(3)
bonds.

Table 3. Interatomic distances in benzotrifuroxan
Length (A)

Length (&) Corrected for
Atoms Least-squares thermal motion
C(1)-C(2) 1-440 + 0-007 1-454
C(2)-C(3) 1401 + 0-008 1-416
C(3)-C® 1:422 +0-007 1-435
C(4)-C(5) 1-425 +0-007 1-439
C(5)-C(6) 1-429 + 0-008 1-444
C(6)-C(1) 1-407 + 0-007 1-419
C(1)-N(1) 1-305 + 0-007 1-316
C(3)-N(3) 1-322 + 0-006 1-335
C(5)-N(5) 1-:300 £ 0-007 1316
C(2)-N(2) 1-318 +0-007 1-324
C(4)-N(4) 1:330+ 0-007 1-336
C(6)-N(6) 1-336 +0-007 1-346
N(1)-0(1) 1-398 + 0-005 1-403
N(3)-0(3) 1-380 +0-007 1-384
N(5)-0(5) 1-:377 £ 0-005 1-380
N(2)-0(2) 1-211 £ 0-007 1-236
N(4)-0(4) 1-201 +0-006 1-225
N(6)-0(6) 1-207 + 0-005 1-235
N(2)-0(3) 1-462 + 0-006 1-469
N(4)-0(5) 1-475+ 0006 1-486
N(6)-0(1) 1-466 + 0-007 1-473

Table 4. Distances of atoms from plane of molecule

Atom  Distance (A) Atom  Distance (A)
C(1) —0-036 N(4) —0-042
C(2) —0-016 N(5) 0-017
C(3) 0-021 N(6) 0-031
C@ 0-010 O(1) —0-033
C(5) 0-027 0Q) —0-052
C(6) 0-013 0(@3) 0-086
NQ@) —0-074 04 —0-096
N(2) -0-002 o(5) —0-007
N@3) 0-085 0O(6) 0-070

Table 5. Magnitudes and direction angles, relative to the
crystallographic axes, of the principal axes
of the vibration ellipsoids

Atom Axisi B; (A2?) a(®) b () c(®)
C(1) 1 46+ 0- 38+18 123+8 72+30
2 3-0+0-2 60+8 33+8 79+11
3 421403 111+26 90+ 19 21+26
C(2) 1 3:2+0-2 28+39 107 + 81 69 +23
2 3-4+0-2 77+74 19+73 76+30
3 5:1+03 11417 98+8 26+7
C(3) 1 3-3+0-2 3+30 88 +371 93+127
2 3-3+0-2 90+ 392 19+27 71+22
3 53+03 87+7 109+7 19+7
Céy 1 4803 5248  124+8 56+8
2 33+03 77172 36+35 57+70
3 32403 139+ 33 102+ 77 52+66
C(5) 1 3-9+0-3 36+53 106 +16 58+53
2 31+02 81+14 17+15 76+ 14
3 41+03 124+ 54 96+ 20 35+50
C(6) 1 3:3+0:2 13+34 79430 84+18
2 3:0+02 103 +34 32414 61+7
3 51+03 90+8 119+6 29+6
N(1) 1 4:0+0-3 36+ 13 74+9 122+12
2 5:4+03 94415 23+18 68 +20
3 48403 54+13 106 +22 40+18
N@) 1 40+02  18+39 74146  83+12
2 4:2+0'3 105+ 46 18+43 100+ 11
3 56+03 100+ 8 83+9 1249
N@3) 1 40+0-3 24+14 105+13 109+8
2 47403 68+ 15 32+10 68+8
3 67104 80+6 117+7 29+6
N@4) 1 5:5+0-3 31+9 11445 71+11
2 34+02 71+6 25+6 74 +11
3 44403 114+ 12 97+11 25+12
N(S) 1 5-6+0-3 33+11 57+10 85+14
2 4-1+0-3 112+10 47+12 129+ 16
3 4:8+0-3 113+16 60+16 40+16
N(6) 1 3-8+0-2 9+13 92+11 99+11
2 5:6+0-3 94+7 44+11 134+ 11
3 46+03 82+14 46+ 11 45+12
o) 1 3-7+0-2 29+5 90+4 11945
2 6:2+0:2 85+7 9+13 82+12
3 5:4+0-2 61+6 99+13 30+7
0(2) 1 56+0-2 24+6 715 104+4
2 3-6+0-2 114+5 47+3 127+3
3 8:6+0-3 92+4 50+2 40+2
0@3) 1 3-7+0-2 25+5 11445 86+5
2 5:3+0-2 67+6 26+6 79+ 10
3 6-5+0-3 98+6 99+10 12+10
0(4) 1 8:0+0-3 50+3 124+4 59+3
2 5:3+0-2 62+5 34+4 73+4
3 3-3+0-2 126 +3 87+4 36+3
O(5) 1 59+0-2 20+12 70+11 86+12
2 51402 109+13 39+20 57+22
3 4-6+02 83+11 122+20 33+21
0O(6) 1 34+02 35+2 125+2 88+3
2 79+0-3 66+6 51+8 48+12
3 7-0+0-3 114 +6 122+9 42+ 12
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These bond numbers indicate a substantial amount
of resonance in the ring system. Weakening of the C-C
bonds in the benzene ring by this resonance was found
in benzotrifuroxan just as it was in 1,3,5-triamino-
2,4,6-trinitrobenzene (Cady & Larson, 1965).

We are indebted to Janice Dinegar for her assist-
ance in collecting the intensity data, and to R.B. Roof
for his interest and suggestions during the determina-
tion of the structure.
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The Structure of Fibrous Sulphur
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The structure of fibrous sulphur has been determined by a systematic use of the Fourier transform of
its helical molecules. From this analysis, the helical molecules appeared to have two incommensurable
repetition lengths in the direction of the helical axis, one being due to the succession of the atoms in
that direction, the other to the pitch of the helix. A trial to substitute the two repetition lengths by a
single one would result in an infinite repetition length. For this reason the structure is not crystallo-
graphic in the classical sense of the word, so we have chosen an improper ‘unit cell’ of orthorhombic
symmetry, containing four helical molecules of supposedly infinite length, with the dimensions
a=811 A and =920 A, c=indeterminate. The directions of @ and & are normal to the helical axis,
but only b is properly a repetition length.

In the direction of a the structure consists of alternating layers of right and left handed helices.
Within each layer the helical molecules are screwed in or out, with respect to their neighbours, over
half the atomic period along the molecule. This explains a peculiar extinction rule.

The molecular parameters, i.e. the bond distance, the bond angle and the dihedral angle, are com-

pared with those of other sulphur molecules.

Introduction

Several physical properties of liquid sulphur suggest that
above 160°C it contains long chain molecules (see e.g.
Schenk, 1956). One of the strongest arguments is pro-
vided by the X-ray fibre diagram, obtained from fibres
made by highly stretching amorphous sulphur quenched
from above 300°C. This diffraction pattern was dis-
covered by Trillat & Forestier (1932); after being wrong-
ly interpreted initially by Meyer & Go (1934) as a one-
component pattern, it was later proved (Prins, Schenk
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& Hospel, 1956) to be due to two components of which
only one is soluble in carbon disulphide. The reflexions
due to the soluble part were shown (Prins, Schenk &
Wachters, 1957) to belong to a metastable ring mod-
ification S, (De Haan, 1958). The reflexions of the
carbon-disulphide-insoluble part evidently formed a
fibre diagram. The corresponding metastable modifica-
tion was called S,.

Schenk (1956), comparing S,, with hexagonal selen-
ium, proposed a preliminary unit cell containing 10
atoms placed in three turns of a cylindrical-helical mol-



